我们人类正在进入虚拟时代,确实想将动物带到虚拟世界中。然而,计算机生成的(CGI)毛茸茸的动物受到乏味的离线渲染的限制,更不用说交互式运动控制了。在本文中,我们提出了Artemis,这是一种新型的神经建模和渲染管道,用于生成具有外观和运动合成的清晰神经宠物。我们的Artemis可以实现互动运动控制,实时动画和毛茸茸的动物的照片真实渲染。我们的Artemis的核心是神经生成的(NGI)动物引擎,该动物发动机采用了有效的基于OCTREE的动物动画和毛皮渲染的代表。然后,该动画等同于基于显式骨骼翘曲的体素级变形。我们进一步使用快速的OCTREE索引和有效的体积渲染方案来生成外观和密度特征地图。最后,我们提出了一个新颖的阴影网络,以在外观和密度特征图中生成外观和不透明度的高保真细节。对于Artemis中的运动控制模块,我们将最新动物运动捕获方法与最近的神经特征控制方案相结合。我们引入了一种有效的优化方案,以重建由多视图RGB和Vicon相机阵列捕获的真实动物的骨骼运动。我们将所有捕获的运动馈送到神经角色控制方案中,以生成具有运动样式的抽象控制信号。我们将Artemis进一步整合到支持VR耳机的现有引擎中,提供了前所未有的沉浸式体验,用户可以与各种具有生动动作和光真实外观的虚拟动物进行紧密互动。我们可以通过https://haiminluo.github.io/publication/artemis/提供我们的Artemis模型和动态毛茸茸的动物数据集。
translated by 谷歌翻译
在设计聚类算法时,初始中心的选择对于学习簇的质量至关重要。在本文中,我们基于数据的构建,我们开发了一种新的初始化方案,称为$ k $ -Median问题(例如图形引起的离散空间),基于数据的构造。从树中,我们提出了一种新颖有效的搜索算法,用于良好的初始中心,随后可用于本地搜索算法。我们提出的HST初始化可以产生与另一种流行初始化方法$ K $ -Median ++的初始中心,具有可比的效率。 HST初始化也可以扩展到差异隐私(DP)的设置,以生成私人初始中心。我们表明,应用DP本地搜索后,我们的私有HST初始化会改善对近似错误的先前结果,并在小因素内接近下限。实验证明了理论的合理性,并证明了我们提出的方法的有效性。我们的方法也可以扩展到$ k $ -MEANS问题。
translated by 谷歌翻译
本文报告了Chalearn的Autodl挑战系列的结果和后攻击分析,这有助于对自动学习(DL)进行分类,以便在各种环境中引入的深度学习(DL),但缺乏公平的比较。格式化所有输入数据模型(时间序列,图像,视频,文本,表格)作为张量,所有任务都是多标签分类问题。代码提交已在隐藏的任务上执行,具有限制时间和计算资源,推动快速获取结果的解决方案。在此设置中,DL方法占主导地位,但流行的神经结构搜索(NAS)是不切实际的。解决方案依赖于微调预培训的网络,架构匹配数据模块。挑战后测试没有透露超出强加时间限制的改进。虽然没有组件尤其原始或新颖,但是一个高级模块化组织出现了“Meta-Learner”,“数据摄入”,“模型选择器”,“模型/学习者”和“评估员”。这种模块化使得消融研究,揭示了(离坡)元学习,合奏和高效数据管理的重要性。异构模块组合的实验进一步证实了获胜解决方案的(本地)最优性。我们的挑战队遗产包括一个持久的基准(http://utodl.chalearn.org),获胜者的开放源代码,以及免费的“autodl自助服务”。
translated by 谷歌翻译
尽管视觉变压器模型的令人印象深刻的表示能力,但目前的轻型视觉变压器模型仍然遭受当地地区的不一致和不正确的预测。我们怀疑他们的自我关注机制的力量在较浅和较薄的网络中受到限制。我们提出Lite Vision变压器(LVT),一种新型轻型变压器网络,具有两个增强的自我关注机制,可以改善移动部署的模型性能。对于低级功能,我们介绍了卷积自我关注(CSA)。与以前的合并卷积和自我关注的方法不同,CSA将局部自我关注引入到大小3x3内核内的卷积中,以丰富LVT第一阶段的低级功能。对于高级功能,我们提出了在计算相似性图和递归机制时利用多尺度上下文的递归的自我关注,以增加具有边际额外参数成本的表示能力。 Imagenet识别,ADE20K语义分割和CoCo Panoptic分割对LVT的优越性。代码公开可用。
translated by 谷歌翻译
在雷达活动识别中,通常利用诸如谱图,克斯特劳和节奏速度图的2D信号表示,而范围信息通常被忽略。在这项工作中,我们建议利用3D时间范围 - 多普勒(TRD)表示,并设计3D正交投影的有效网络(3D-OPEN),以有效地捕获嵌入在3D TRD立方体中的判别信息以进行准确分类。该建议的模型从3D特征空间投影的三个正交平面中汇总判别信息。它减轻了3D CNNS在利用高维3D表示中利用稀疏语义抽象中的困难。在毫米波雷达步行数据集上评估所提出的方法。它显着且始终如一地优于雷达活动识别的最先进方法。
translated by 谷歌翻译
跨域建议可以帮助缓解传统的连续推荐系统中的数据稀疏问题。在本文中,我们提出了Recguru算法框架,以在顺序推荐中生成包含跨域的用户信息的广义用户表示,即使在两个域中的最小或没有公共用户时也是如此。我们提出了一种自我细心的AutoEncoder来导出潜在用户表示,以及域鉴别器,其旨在预测所产生的潜在表示的原点域。我们提出了一种新的逆势学习方法来训练两个模块,以使从不同域生成的用户嵌入到每个用户的单个全局Gur。学习的Gur捕获了用户的整体偏好和特征,因此可以用于增强行为数据并改进在涉及用户的任何单个域中的推荐。在两个公共交叉域推荐数据集以及从现实世界应用程序收集的大型数据集进行了广泛的实验。结果表明,Recguru提高了性能,优于各种最先进的顺序推荐和跨域推荐方法。收集的数据将被释放以促进未来的研究。
translated by 谷歌翻译
基于光谱的图形神经网络(SGNNS)在图表表示学习中一直吸引了不断的关注。然而,现有的SGNN是限于实现具有刚性变换的曲线滤波器(例如,曲线图傅立叶或预定义的曲线波小波变换)的限制,并且不能适应驻留在手中的图形和任务上的信号。在本文中,我们提出了一种新颖的图形神经网络,实现了具有自适应图小波的曲线图滤波器。具体地,自适应图表小波通过神经网络参数化提升结构学习,其中开发了基于结构感知的提升操作(即,预测和更新操作)以共同考虑图形结构和节点特征。我们建议基于扩散小波提升以缓解通过分区非二分类图引起的结构信息损失。通过设计,得到了所得小波变换的局部和稀疏性以及提升结构的可扩展性。我们进一步通过在学习的小波中学习稀疏图表表示来引导软阈值滤波操作,从而产生局部,高效和可伸缩的基于小波的图形滤波器。为了确保学习的图形表示不变于节点排列,在网络的输入中采用层以根据其本地拓扑信息重新排序节点。我们在基准引用和生物信息图形数据集中评估节点级和图形级别表示学习任务的所提出的网络。大量实验在准确性,效率和可扩展性方面展示了在现有的SGNN上的所提出的网络的优越性。
translated by 谷歌翻译
在计算机视觉模型中自我关注已经普遍存在。灵感来自完全连接的条件随机字段(CRF),我们将自我关注分解为本地和上下文条款。它们对应于CRF中的一元和二进制术语,并通过带投影矩阵的注意机制来实现。我们观察到,即机构只能对产出作出小贡献,而且同时依赖于机智术语的标准CNNS在各种任务上实现了良好的表现。因此,我们提出了局部增强的自我关注(LESA),通过将其与卷曲掺入卷积来增强联合术语,并利用融合模块动态地耦合偶联和二进制操作。在我们的实验中,我们用Lesa取代自我关注模块。 Imagenet和Coco的结果显示了Lesa在卷积和自我关注基线的优越性,用于图像识别,对象检测和实例分割的任务。代码公开可用。
translated by 谷歌翻译
消息传递已作为设计图形神经网络(GNN)的有效工具的发展。但是,消息传递的大多数现有方法简单地简单或平均所有相邻的功能更新节点表示。它们受到两个问题的限制,即(i)缺乏可解释性来识别对GNN的预测重要的节点特征,以及(ii)特征过度混合,导致捕获长期依赖和无能为力的过度平滑问题在异质或低同质的下方处理图。在本文中,我们提出了一个节点级胶囊图神经网络(NCGNN),以通过改进的消息传递方案来解决这些问题。具体而言,NCGNN表示节点为节点级胶囊组,其中每个胶囊都提取其相应节点的独特特征。对于每个节点级胶囊,开发了一个新颖的动态路由过程,以适应适当的胶囊,以从设计的图形滤波器确定的子图中聚集。 NCGNN聚集仅有利的胶囊并限制无关的消息,以避免交互节点的过度混合特征。因此,它可以缓解过度平滑的问题,并通过同粒或异质的图表学习有效的节点表示。此外,我们提出的消息传递方案本质上是可解释的,并免于复杂的事后解释,因为图形过滤器和动态路由过程确定了节点特征的子集,这对于从提取的子分类中的模型预测最为重要。关于合成和现实图形的广泛实验表明,NCGNN可以很好地解决过度光滑的问题,并为半监视的节点分类产生更好的节点表示。它的表现优于同质和异质的艺术状态。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译